expression in p425TEF. Both recombinant yeasts (AH22:p11α-SH and AH22:p509C12) exhibited efficient progesterone bioconversion (on glucose minimal medial containing 300 µM progesterone) producing either 11α-hydroxyprogesterone as the sole metabolite (AH22:p11α-SH) or a 7:1 mixture of 11α-hydroxyprogesterone and 6β-hydroxyprogesterone (AH22:p509C12). Ethanol yields for AH22:p11α-SH and AH22:p509C12 were comparable resulting in ≥75% conversion of glucose to alcohol. Co-production of bioethanol together with efficient production of the 11-OH intermediate for corticosteroid manufacture was then demonstrated using perennial ryegrass juice. Integration of the 11α-SH gene into the yeast genome (AH22:11α-SHAoch+K) resulted in a 36% reduction in yield of 11α-hydroxyprogesterone to 174 µmol/L using 300 µM
Murray at Upjohn published the first report of a fermentation process for the microbial 11α-oxygenation of steroids in a single step (by common molds of the order Mucorales). Their fermentation process could produce 11α-hydroxyprogesterone or 11α-hydrocortisone from progesterone or Compound S, respectively, which could then by further chemical steps be converted to cortisone or 11β-hydrocortisone