biomarkers (17α-hydroxypregnenolone, tetrahydrodeoxy-corticosterone, sphingosine, cortol, thymine, and L-histidine), thereby improving disorders in glycerophospholipid and histidine metabolism. In conclusion, the amelioration effects of CTE and its combination with FLX on depression in comorbid with sexual dysfunction were confirmed for the first time. This key mechanism may be achieved by modulating
micropollutants, neglected in the past due to a lack of suitable analytical methods. In this study, we used supercritical fluid chromatography (SFC) to detect very polar and yet-undetected micropollutants in wastewater effluents. We tentatively identified 85 compounds, whereas 18 have only rarely been detected and 11 have not previously been detected in wastewater effluents such as 17α-hydroxypregnenolone
hypertrophy and enhanced spermatogenesis. Because Cyp17a1 plays key roles in hydroxylation of pregnenolone and progesterone (P4), and converts 17α-hydroxypregnenolone to dehydroepiandrosterone and 17α-hydroxyprogesterone to androstenedione, we hypothesize that the unexpected phenotype in -/-; ()-/- zebrafish may be mediated through an augmentation of progestin/nuclear progestin receptor (nPgr) signaling
bacterial enzymes, were expressed in mammalian cells by transient transfection and found to be active. We made three unusual steroids by stable expression, in HEK293 cells, of the 7α-hydroxylase CYP7B1, which was selected because of its high native product yield. These cells made 7α,17α-dihydroxypregnenolone and 7β,17α-dihydroxypregnenolone from 17α-hydroxypregnenolone and produced 11α,16α
-hydroxylase and 17,20-lyase of CYP17A1 were evaluated by measuring the conversion of progesterone to 17α-hydroxyprogesterone and of 17α-hydroxypregnenolone to dehydroepiandrosterone, respectively. In addition a computer model was used to create the three-dimensional structure of the mutant CYP17A1 enzymes. Production of the p.His373Leu mutant protein was significantly lower than that of the wild type
in the AV after cosyntropin stimulation (AV DHEAS/PregS, 24 and 1.3 before and after cosyntropin, respectively). In cultured adrenal cells, PregS demonstrated the sharpest response to cosyntropin, whereas DHEAS responded only modestly (21-fold vs 1.8-fold higher compared with unstimulated cells at 3 hours, respectively). Steroid analyses in isolated ZF and ZR showed similar amounts of PregS and 17α -hydroxypregnenolone in both zones, whereas DHEAS and AdiolS were higher in ZR (P < 0.05). Our studies demonstrated that unlike DHEAS, PregS displayed a prominent acute response to cosyntropin. PregS could be used to interrogate the acute adrenal response to ACTH stimulation and as a biomarker in various adrenal disorders.
the conversion of 17α-hydroxypregnenolone to DHEA than toward the 17α-hydroxylation of pregnenolone. IC values for ()-orteronel were identical for blocking DHEA formation from pregnenolone and for 17α-hydroxylation, suggestive of processivity. Global kinetic modeling helped assign sets of rate constants for individual or groups of reactions, indicating that human P450 17A1 is an inherently distributive enzyme
sulfotransferase type 2A1 but decreased 3β-hydroxysteroid dehydrogenase type 2 (HSD3B2). In addition to DHEA-S, three adrenal Δ5-steroid sulfates could provide additional tools to define adrenal maturation. This study sought to simultaneously measure serum levels of four adrenal Δ5-steroid sulfates, pregnenolone sulfate (Preg-S), 17α-hydroxypregnenolone sulfate (17OHPreg-S), DHEA-S, and 5-androstenediol-3
of the role of ferric peroxide (FeO2 (-)) versus perferryl (FeO(3+), compound I) chemistry. We reinvestigated the 17α-hydroxyprogesterone and 17α-hydroxypregnenolone 17α,20-lyase reactions of human P450 17A1 and found incorporation of one (18)O atom (from (18)O2) into acetic acid, consonant with proposals for a ferric peroxide mechanism (Akhtar, M., Lee-Robichaud, P., Akhtar, M. E., and Wright, J. N. (1997
presentations discussed the interactions of P450s with NADPH-P450 reductase (CPR) and cytochrome b5. First, solution nuclear magnetic resonance was used to compare the protein interactions that facilitated either the hydroxylase or lyase activities of CYP17A1. The lyase interaction was stimulated by the presence of b5 and 17α-hydroxypregnenolone, whereas the hydroxylase reaction was predominant in the absence
in human synthesis of androgen and estrogen sex steroids. The distribution of CYP17A1 conformational states was influenced by temperature, binding of these two substrates, and binding of the soluble domain of cytochrome b5 (b5). Notably, titration of b5 to CYP17A1·pregnenolone induced a set of conformational states closely resembling those of CYP17A1·17α-hydroxypregnenolone without b5, providing
adrenal hyperplasia (CAH) resulting from a mutation in the gene for one of the key enzymes in cortisol synthesis by the adrenal gland, 3β-hydroxysteroid dehydrogenase (3β-HSD) type II (HSD3B2).[1][2] As a result, higher levels of 17α-hydroxypregnenolone appear in the blood with adrenocorticotropic hormone (ACTH) challenge, which stimulates adrenal corticosteroid synthesis.There is a wide spectrum help by adding to it. (February 2017) Pathophysiology[edit]3β-HSD II mediates three parallel dehydrogenase/isomerase reactions in the adrenals that convert Δ4 to Δ5 steroids: pregnenolone to progesterone, 17α-hydroxypregnenolone to 17α-hydroxyprogesterone, and dehydroepiandrosterone (DHEA) to androstenedione. 3β-HSD II also mediates an alternate route of testosterone synthesis from androstenediol
. The enzyme itself is attached to the smooth endoplasmic reticulum of the steroid-producing cells of the adrenal cortex and gonads. CYP17A1 functions as both a 17α-hydroxylase and a 17,20-lyase. The dual activities mediate three key transformations in cortisol and sex steroid synthesis:[citation needed] * As 17α-hydroxylase it mediates pregnenolone → 17α-hydroxypregnenolone * and progesterone → 17α -hydroxyprogesterone. * As 17,20-lyase it mediates 17α-hydroxypregnenolone → DHEA. * An expected second 17,20-lyase reaction (17α-hydroxyprogesterone → androstenedione) is mediated so inefficiently in humans as to be of no known significance.The hydroxylase reactions are part of the synthetic pathway to cortisol as well as sex steroids, but the lyase reaction is only necessary for sex steroid synthesis. Different
reduces the efficiency of cortisol synthesis, with consequent hyperplasia of the adrenal cortex and elevation of ACTH levels. ACTH stimulates uptake of cholesterol and synthesis of pregnenolone. Steroid precursors up to and including progesterone, 17α-hydroxypregnenolone, and especially 17α-hydroxyprogesterone accumulate in the adrenal cortex and in circulating blood. Blood levels of 17OHP can reach 10 -1000 times the normal concentration.Since 21-hydroxylase activity is not involved in synthesis of androgens, a substantial fraction of the large amounts of 17α-hydroxypregnenolone is diverted to synthesis of DHEA, androstenedione, and testosterone[original research?] beginning in the third month of fetal life in both sexes.Synthesis of aldosterone is also dependent on 21-hydroxylase activity