complexes, (ii) the synaptic localization of mGluR5 and (iii) the mGluR5-mediated enhancement of NMDA-induced neuronal responses. Importantly, we showed that the stimulation of mGluR5 activity by administering in mice specific positive-allosteric-modulators (PAMs), i.e., 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) or RO6807794, corrected the synaptic, functional and behavioral defects shown
Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti
rats displayed increased mGlu5 gene expression in the amygdala and medial prefrontal cortex and did not display the enhanced cocaine seeking observed in susceptible rats. Combined treatment with the mGlu5 positive allosteric modulator 3-Cyano-N-(1,3-diphenyl-1 H-pyrazol-5-yl)benzamide (CDPPB), fear extinction, and ceftriaxone prevented the reinstatement of cocaine seeking in susceptible rats
by ethanol-associated cues. Extinction-based cue exposure therapies have proven ineffective in the treatment of alcoholism. However, positive allosteric modulation of mGlu5 with CDPPB enhances the extinction learning of alcohol-seeking behavior. The current study investigated the impact of chronic alcohol exposure on the extinction of ethanol-seeking behavior. Adult Wistar rats were trained to self exposed rats consumed more ethanol compared to their pre-CIE levels and to control rats. During extinction training, CIE rats responded significantly more on the previously active lever and required more sessions to reach extinction criteria compared to control rats. Treatment with CDPPB facilitated extinction in control rats and attenuated the increased resistance to extinction in CIE-exposed rats
)] and then extinguished in the absence of the CS. Following lever extinction, half the rats received CS extinction in the same chambers but with the levers withdrawn; the remaining rats received no CS extinction. Before this session, rats received a systemic administration of either vehicle or a mGlu5 NAM (MTEP, experiment 1) or PAM (CDPPB, experiment 2). Cue-induced reinstatement was tested in a drug-free session the following day. At reinstatement, rats that had received CS extinction showed reduced responding. This effect was attenuated by MTEP treatment before CS extinction. In contrast, administration of CDPPB (PAM) led to decreased reinstatement the following day, regardless of extinction condition. These results suggest that mGlu5 receptor activity is both necessary and sufficient for efficient extinction
) following CORT exposure (7 days). The functional role of these CORT-induced adaptations in relation to the discriminative stimulus effects of alcohol was confirmed, as both the systemic administration of 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) an mGluR5 positive allosteric modulator and the intra-accumbens administration of (R,S)-2-Amino-2-(2-chloro-5-hydroxyphenyl)acetic acid sodium
, AIE increased resistance to extinction of ethanol-seeking behavior. This resistance to extinction was reversed by positive allosteric modulation of mGluR5 during extinction training, an effect that is thought to reflect promotion of extinction learning mechanisms within the medial PFC. Consistent with this, CDPPB was also observed to reverse the deficits in behavioral flexibility. Finally, diffusion
trained to self-administer ethanol and then exposed to extinction training during which they were administered either vehicle or the mGluR5 positive allosteric modulator 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) or CDPPB. CDPPB treatment reduced active lever responding during extinction, decreased the total number of extinction sessions required to meet criteria, and attenuated cue-induced reinstatement of ethanol seeking. CDPPB facilitation of extinction was blocked by the local infusion of the mGluR5 antagonist 3-((2-methyl-4-thiazolyl)ethynyl) pyridine into the infralimbic (IfL) cortex, but had no effect when infused into the prelimbic (PrL) cortex. Analysis of dendritic spines revealed alterations in structural plasticity, whereas electrophysiological recordings demonstrated differential alterations
receptor (mGluR) expression, and the possible reversal of cognitive impairments with the mGluR5 allosteric modulator, 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB). Male, Long-Evans rats self-administered i.v. meth (0.02 mg/infusion) on an FR1 schedule of reinforcement or received yoked-saline infusions. After seven daily 1-h sessions, rats were switched to 6-h daily sessions for 14 days , and then underwent drug abstinence. Rats were tested for object recognition memory at 1 week after meth SA at 90 min and 24 h retention intervals. In a separate experiment, rats underwent the same protocol, but received either vehicle or CDPPB (30 mg/kg) after familiarization. Rats were killed on day 8 or 14 post-SA and brain tissue was obtained. Meth intake escalated over the extended access period. Additionally
-prazol-5-yl)benzamide (CDPPB), S-(4-fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidinl-1-yl}-methanone (ADX47273)], stimulated a Ca2+ response when applied alone, but each PAM concentration-dependently increased the frequency, without affecting the amplitude, of Ca2+ oscillations induced by glutamate or quisqualate. Therefore, PAMs can cause graded increases (and negative
net affinity/efficacy cooperativity parameters (αβ) obtained from analyses of the abilities of PAMs to potentiate [(3)H]inositol phosphate accumulation in astrocytes stimulated with a submaximal (EC(20)) concentration of orthosteric agonist. We report that whereas 3,3'-difluorobenzaldazine (DFB) and 3-cyano-N-(1,3-diphenyl-1H-prazol-5-yl)benzamide (CDPPB) primarily exert their allosteric modulatory
antagonist D-APV and the selective NR2B inhibitor ifenprodil was investigated. This study used the multi-electrode dish (MED) system to observe field potentials in hippocampal slices of mice. Data showed that the mGluR5 agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), as well as the positive allosteric modulators 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB) and 3,3'-difluorobenzaldazine (DFB) alone did not alter the basal field potentials, but enhanced the amplitude of field potentials induced by NMDA. The inhibitory action of ketamine on NMDA-induced response was reversed by CHPG, DFB, and CDPPB, whereas the blockade of NMDA receptor by D-APV was restored by CHPG and CDPPB, but not by DFB. Alternatively, activation of NMDA receptors prior to the application of mGluR5 modulators