the application of deep learning techniques in tongue image analyses. A total of 8676 tongue images were annotated by clinical experts, into seven categories, including the fissured tongue, tooth-marked tongue, stasis tongue, spotted tongue, greasy coating, peeled coating, and rotten coating. Based on the labeled tongue images, the deep learning model faster region-based convolutional neural networks (Faster R , precision, and F1-score of our model achieved 90.67%, 91.25%, 99.28%, and 95.00%, respectively. Over the tongue images from the medical checkup population, the model Faster R-CNN detected 41.49% fissured tongue images, 37.16% tooth-marked tongue images, 29.66% greasy coating images, 18.66% spotted tongue images, 9.97% stasis tongue images, 3.97% peeled coating images, and 1.22% rotten coating images