"Fosmidomycin"

69 resultsPro users have access to +2 Systematic Reviews

Filter Results
          • Pro
          • Pro
          • Pro
          • Pro
          • Pro
          • Pro
                    • Pro

                            Clinical Area Pro

                            Further Refinement
                            User Guide

                            User Guide

                            1
                            2017Clinical Infectious Diseases
                            Efficacy and safety of fosmidomycin-piperaquine as non-artemisinin-based combination therapy for uncomplicated falciparum malaria - A single-arm, age-de-escalation proof of concept study in Gabon. Fosmidomycin-piperaquine is being developed as nonartemisinin-based combination therapy to meet the challenge of emerging artemisinin resistance. The study was a phase 2, single-arm, proof-of-concept study of the efficacy, tolerability, and safety of fosmidomycin-piperaquine for the treatment of uncomplicated Plasmodium falciparum monoinfection in Gabon. Adults and children of both sexes with initial parasite counts between 1000 and 150000/µL received oral treatment with fosmidomycin (twice daily doses of 30 mg/kg) and piperaquine (once daily dose of 16 mg/kg) for 3 days and followed-up for 63
                            2
                            2016Journal of Infectious Diseases
                            Whole genome sequencing to evaluate the resistance landscape following antimalarial treatment failure with fosmidomycin-clindamycin. Novel antimalarial therapies are needed in the face of emerging resistance to artemisinin combination therapies. A previous study found a high cure rate in Mozambican children with uncomplicated Plasmodium falciparum malaria 7 days after combination treatment with fosmidomycin-clindamycin. However, 28-day cure rates were low (45.9%), owing to parasite recrudescence. We sought to identify any genetic changes underlying parasite recrudescence. To this end, we used a selective whole-genome amplification method to amplify parasite genomes from blood spot DNA samples. Parasite genomes from pretreatment and postrecrudescence samples were subjected to whole-genome sequencing
                            Subscribe to Trip PRO for an enhanced experience
                            • Access to millions of Full-text articles where avaliable
                            • Unlock 100,000+ extra articles with Systematic Reviews
                            • Further Filtering Options
                            • No adverts
                            • Advanced Search Ability
                            • Enhanced SmartSearch showing unlimited related articles
                            Read more about Trip PRO
                            3
                            2016Medchemcomm
                            Potentiation of the Fosmidomycin analogue FR 900098 with substituted 2-oxazolines against Francisella novicida A library of 33 compounds was screened for potentiation of the antibiotic FR 900098 against the surrogate . From the screen a highly potent 2-oxazoline adjuvant was discovered capable of potentiating FR 900098 with a 1000-fold reduction in MIC against the sub-species and .
                            4
                            Resistance to the antimicrobial agent fosmidomycin and an FR900098 prodrug through mutations in deoxyxylulose phosphate reductoisomerase (Dxr). There is a pressing need for new antimicrobial therapies to combat globally important drug-resistant human pathogens, including Plasmodium falciparum malarial parasites, Mycobacterium tuberculosis, and Gram-negative bacteria, including Escherichia coli . These organisms all possess the essential methylerythritol phosphate (MEP) pathway of isoprenoid biosynthesis, which is not found in humans. The first dedicated enzyme of the MEP pathway, 1-deoxy-d-xylulose 5-phosphate reductoisomerase (Dxr), is inhibited by the phosphonic acid antibiotic fosmidomycin and its analogs, including the N-acetyl analog FR900098 and the phosphoryl analog fosfoxacin. In order
                            5
                            Fosmidomycin decreases membrane hopanoids and potentiates the effects of colistin on Burkholderia multivorans clinical isolates. Burkholderia cepacia complex (Bcc) pulmonary infections in people living with cystic fibrosis (CF) are difficult to treat because of the extreme intrinsic resistance of most isolates to a broad range of antimicrobials. Fosmidomycin is an antibacterial and antiparasitic agent that disrupts the isoprenoid biosynthesis pathway, a precursor to hopanoid biosynthesis. Hopanoids are involved in membrane stability and contribute to polymyxin resistance in Bcc bacteria. Checkerboard MIC assays determined that although isolates of the Bcc species B. multivorans were highly resistant to treatment with fosmidomycin or colistin (polymyxin E), antimicrobial synergy was observed
                            6
                            2014Biochemistry
                            Alteration of the Flexible Loop in 1-Deoxy-d-xylulose-5-phosphate Reductoisomerase Boosts Enthalpy-Driven Inhibition by Fosmidomycin 1-Deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), which catalyzes the first committed step in the 2-C-methyl-d-erythritol 4-phosphate pathway of isoprenoid biosynthesis used by Mycobacterium tuberculosis and other infectious microorganisms, is absent in humans and therefore an attractive drug target. Fosmidomycin is a nanomolar inhibitor of DXR, but despite great efforts, few analogues with comparable potency have been developed. DXR contains a strictly conserved residue, Trp203, within a flexible loop that closes over and interacts with the bound inhibitor. We report that while mutation to Ala or Gly abolishes activity, mutation to Phe and Tyr only modestly
                            7
                            Improved efficacy of fosmidomycin against Plasmodium and Mycobacterium species by combination with the cell penetrating peptide octaarginine. Cellular drug delivery can improve efficacy and render intracellular pathogens susceptible to compounds that cannot permeate cells. The transport of physiologically active compounds across membranes into target cells can be facilitated by cell-penetrating peptides (CPPs), such as oligoarginines. Here, we investigated whether intracellular delivery of the drug fosmidomycin can be improved by combination with the CPP octaarginine. Fosmidomycin is an antibiotic that inhibits the second reaction in the nonmevalonate pathway of isoprenoid biosynthesis, an essential pathway for many obligate intracellular pathogens, including mycobacteria and apicomplexan
                            8
                            2012Frontiers in microbiology
                            Resistance of Francisella Novicida to Fosmidomycin Associated with Mutations in the Glycerol-3-Phosphate Transporter The methylerythritol phosphate (MEP) pathway is essential in most prokaryotes and some lower eukaryotes but absent from human cells, and is a validated target for antimicrobial drug development. The formation of MEP is catalyzed by 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR). MEP pathway genes have been identified in many category A and B biothreat agents, including Francisella tularensis, which causes the zoonosis tularemia. Fosmidomycin (Fos) inhibits purified Francisella DXR. This compound also inhibits the growth of F. tularensis NIH B38, F. novicida and F. tularensis subsp. holarctica LVS bacteria. Related compounds such as FR900098 and the lipophilic prodrug
                            10
                            or predicted to enter infected erythrocytes through transport pathways absent from noninfected erythrocytes, such as fosmidomycin, doxycycline, azithromycin, lumefantrine, or pentamidine, do not require expression of genes for their antimalarial activity. This suggests that they use alternative CLAG3-independent routes to access parasites. Our results demonstrate that can develop resistance to diverse
                            11
                            , the role of the apicoplast was assessed in dormant parasite recovery. Apicoplast-deficient remained viable for up to 8 days without the organelle and recrudesced only when supplemented with isopentyl pyrophosphate (IPP). IPP was not required for survival in the dormant state. Fosmidomycin inhibition of isoprenoid biosynthesis did not prevent dormancy release from occurring in parasites with an intact
                            12
                            2018Parasites & vectors
                            falciparum were reported to possess an apicoplast which contains the methylerythritol phosphate (MEP) pathway inhibitable by fosmidomycin, suggesting that the pathway could serve as a drug target for screening new drugs. However, it remains unknown in B. orientalis. Primers were designed according to the seven MEP pathway genes of Babesia microti and Babesia bovis. The genes were cloned, sequenced and BoDXR in B. orientalis. Fosmidomycin and geranylgeraniol were used for inhibition assay and rescue assay, respectively, in the in vitro cultivation of B. orientalis. The seven enzyme genes of the B. orientalis MEP pathway (DXS, DXR, IspD, IspE, IspF, IspG and IspH) were cloned and sequenced, with a full length of 2094, 1554, 1344, 1521, 654, 1932 and 1056 bp, respectively. BoDXS and BoDXR were
                            13
                            2018BMC plant biology
                            biosynthesis, which are found to be formed through mevalonate pathway. This was further confirmed by treatment of cell suspension with mevinolin, a specific inhibitor for MVA pathway, which resulted in drastic decrease in limonoid levels whereas their biosynthesis was unaffected with fosmidomycin mediated plastidial methylerythritol 4-phosphate (MEP) pathway inhibition. This was also conspicuous
                            14
                            2018mBio
                            Suppression of Drug Resistance Reveals a Genetic Mechanism of Metabolic Plasticity in Malaria Parasites In the malaria parasite , synthesis of isoprenoids from glycolytic intermediates is essential for survival. The antimalarial fosmidomycin (FSM) inhibits isoprenoid synthesis. In , we identified a loss-of-function mutation in ( 3D7_1226300 [PF3D7_1226300]) as necessary for FSM resistance . The antibiotic fosmidomycin targets the synthesis of essential isoprenoid compounds from glucose and is a candidate for antimalarial development. Our report identifies a novel mechanism of drug resistance and further describes a family of metabolic regulators in the parasite. Using a novel forward genetic approach, we also uncovered mutations that suppress drug resistance in the glycolytic enzyme PFK9. Thus
                            15
                            drugs are on- or off-target. We demonstrate that a prokaryotic DNA replication inhibitor (ciprofloxacin), several prokaryotic translation inhibitors (chloramphenicol, doxycycline, tetracycline, clindamycin, azithromycin, erythromycin, and clarithromycin), a tRNA synthase inhibitor (mupirocin), and two IPP synthesis pathway inhibitors (fosmidomycin and FR900098) have apicoplast targets. Intriguingly , fosmidomycin and FR900098 leave the apicoplast intact, whereas the others eventually result in apicoplast loss. Actinonin, an inhibitor of bacterial posttranslational modification, does not produce a typical delayed-death response but is rescued with IPP, thereby confirming its apicoplast target. Parasites treated with putative apicoplast fatty acid pathway inhibitors could not be rescued, demonstrating
                            16
                            on off-target effects and drug modifications. Here, we present data from an untargeted liquid chromatography-mass spectrometry approach to identify the modes of action of eight compounds: 1-[3-fluoro-4-(5-methyl-2,4-dioxo-pyrimidin-1-yl)phenyl]-3-[2-(trifluoromethyl)phenyl]urea (AZ1), 2-(cyclobutylmethoxy)-5'-deoxyadenosine, triclosan, fosmidomycin, CHIR-090, carbonyl cyanidem-chlorophenylhydrazone (CCCP), 5-chloro-2-(methylsulfonyl)-N-(1,3-thiazol-2-yl)-4-pyrimidinecarboxamide (AZ7), and ceftazidime. Data analysts were blind to the compound identities but managed to identify the target as thymidylate kinase for AZ1, isoprenoid biosynthesis for fosmidomycin, acyl-transferase for CHIR-090, and DNA metabolism for 2-(cyclobutylmethoxy)-5'-deoxyadenosine. Changes to cell wall metabolites were seen
                            17
                            2016Frontiers in microbiology
                            they participate in glycoprotein synthesis, electron transport chain, tRNA modification and several other biological processes. Several compounds have been tested against the enzymes involved in this pathway and amongst them Fosmidomycin, targeted against IspC (DXP reductoisomerase) enzyme and MMV008138 targeted against IspD enzyme have shown good anti-malarial activity in parasite cultures. Fosmidomycin is now
                            18
                            2016mSphere
                            and , use the nonmevalonate pathway. In contrast, , , and use the mevalonate pathway. The antibiotic fosmidomycin, an inhibitor of the nonmevalonate pathway, was effective in killing canine clinical staphylococcal isolates but had no effect on the growth or survival of and . These data identify an essential metabolic pathway in that differs among members of this genus and suggest that drugs such as fosmidomycin, which targets enzymes in the nonmevalonate pathway, may be an effective treatment for certain staphylococcal infections. Drug-resistant species are a major concern in human and veterinary medicine. There is a need for new antibiotics that exhibit a selective effect in treating infections in companion and livestock animals and that would not be used to treat human bacterial infections. We have
                            19
                            2016NPJ biofilms and microbiomes
                            that the underlying taxonomic structure is driven by differences in the core metabolism of the groups. Topological analysis of the functional network identified the non-mevalonate pathway of isoprenoid biosynthesis as a keystone for the microbial community, which can be targeted with the antibiotic fosmidomycin. This study uses ecological theory to identify novel treatment approaches against a polymicrobial disease
                            20
                            2016Infectious diseases of poverty
                            electrocardiac events, which led to prolonged QTc intervals. Tafenoquine, the only new anti-relapse scaffold for patients with a glucose-6-phosphate dehydrogenase deficiency, has raised significant concerns due to its hemolytic activity. Other compounds, including methylene blue (potential transmission blocker) and fosmidomycin (DXP reductoisomerase inhibitor), are available but cannot be used in children.At