The novel CDK9 inhibitor, XPW1, alone and in combination with BRD4 inhibitor JQ1, for the treatment of clear cell renal cell carcinoma. Clear cell renal cell carcinoma (ccRCC) is a highly lethal malignancy with few therapeutic options. Cyclin‑dependent kinase 9 (CDK9), a potential therapeutic target of many cancers, has been recently observed to be upregulated in ccRCC patients. Therefore, we inhibitor JQ1 enhanced XPW1's anti-ccRCC effects in vitro and in vivo. This work provides valuable insights into the therapeutic potential of CDK9 in ccRCC. The CDK9 inhibitor XPW1 would be a novel therapeutic agent for targeting ccRCC, alone or in rational combinations.
Synergistic anti-proliferative activity of JQ1 and GSK2801 in triple-negative breast cancer. Triple-negative breast cancer (TNBC) constitutes 10-20% of breast cancers and is challenging to treat due to a lack of effective targeted therapies. Previous studies in TNBC cell lines showed in vitro growth inhibition when JQ1 or GSK2801 were administered alone, and enhanced activity when co -administered. Given their respective mechanisms of actions, we hypothesized the combinatorial effect could be due to the target genes affected. Hence the target genes were characterized for their expression in the TNBC cell lines to prove the combinatorial effect of JQ1 and GSK2801. RNASeq data sets of TNBC cell lines (MDA-MB-231, HCC-1806 and SUM-159) were analyzed to identify the differentially expressed
Selective BET-bromodomain inhibition by JQ1 suppresses dendritic cell maturation and antigen-specific T-cell responses. Bromo- and extra-terminal domain (BET) inhibitors represent potential therapeutic approaches in solid and hematological malignancies that are currently analyzed in several clinical trials. Additionally, BET are involved in the epigenetic regulation of immune responses by macrophages and dendritic cells (DCs), that play a central role in the regulation of immune responses, indicating that cancer treatment with BET inhibitors can promote immunosuppressive effects. The aim of this study was to further characterize the effects of selective BET inhibition by JQ1 on DC maturation and DC-mediated antigen-specific T-cell responses. Selective BET inhibition by JQ1 impairs LPS
BRD4 inhibition by JQ1 prevents high-fat diet-induced diabetic cardiomyopathy by activating PINK1/Parkin-mediated mitophagy in vivo. BRD4 is a member of the BET family of epigenetic regulators. Inhibition of BRD4 by the selective bromodomain inhibitor JQ1, alleviates thoracic aortic constriction-induced cardiac hypertrophy and heart failure. However, whether BRD4 inhibition by JQ1 has therapeutic structure and function. BRD4 inhibition by JQ1 improves mitochondrial function, and repairs the cardiac structure and function of the diabetic heart. These effects depended on rewiring of the BRD4-driven transcription and repression of PINK1. Deletion of Pink1 suppresses mitophagy, exacerbates cardiomyopathy, and abrogates the therapeutic effect of JQ1 on diabetic cardiomyopathy. Our results illustrate
JQ1 inhibits tumour growth in combination with cisplatin and suppresses JAK/STAT signalling pathway in ovarian cancer. Overexpression of c-Myc is commonly seen in human ovarian cancers, and this could be a potentially novel therapeutic target for this disease. JQ1, a selective small-molecule BET (Bromodomain and extraterminal domain family) bromodomain (BRDs) inhibitor, has been found to suppress tumour progression in several cancer cell types. Using a panel of ovarian cancer cell lines and primary cell cultures from human ovarian cancer ascites, we demonstrated that JQ1 significantly suppressed cell proliferation and induced apoptosis in an ovarian cancer cell by targeting BRD4 and c-Μyc. In addition, JQ1 sensitized ovarian cancer cells to cisplatin, the most commonly used
Bromodomain and Extraterminal Inhibition by JQ1 Produces Divergent Transcriptional Regulation of Suppressors of Cytokine Signaling Genes in Adipocytes. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway has cell-specific functions. Suppressors of cytokine signaling (SOCS) proteins are negative-feedback regulators of JAK-STAT signaling. STAT5 plays a significant role in adipocyte development and function, and bromodomain and extraterminal (BET) proteins may be involved in STAT5 transcriptional activity. We treated 3T3-L1 adipocytes with the BET inhibitor JQ1 and observed that growth hormone (GH)-induced expression of 2 STAT5 target genes from the SOCS family, Socs3 and Cish, were inversely regulated (increased and decreased, respectively) by BET
Small molecule JQ1 promotes prostate cancer invasion via BET-independent inactivation of FOXA1. Recent findings have shown that inhibitors targeting bromodomain and extraterminal domain (BET) proteins, such as the small molecule JQ1, are potent growth inhibitors of many cancers and hold promise for cancer therapy. However, some reports have also revealed that JQ1 can activate additional oncogenic pathways and may affect epithelial-to-mesenchymal transition (EMT). Therefore, it is important to address the potential unexpected effect of JQ1 treatment, such as cell invasion and metastasis. Here, we showed that in prostate cancer, JQ1 inhibited cancer cell growth but promoted invasion and metastasis in a BET protein-independent manner. Multiple invasion pathways including EMT, bone morphogenetic
The BET inhibitor JQ1 attenuates double-strand break repair and sensitizes models of pancreatic ductal adenocarcinoma to PARP inhibitors. DNA repair deficiency accumulates DNA damage and sensitizes tumor cells to PARP inhibitors (PARPi). Based on our observation that the BET inhibitor JQ1 increases levels of DNA damage, we evaluated the efficacy of JQ1 + the PARPi olaparib in preclinical models of pancreatic ductal adenocarcinoma (PDAC). We also addressed the mechanism by which JQ1 increased DNA damage. The effect of JQ1 + olaparib on in vivo tumor growth was assessed with patient-derived xenograft (PDX) models of PDAC. Changes in protein expression were detected by immunohistochemistry and immunoblot. In vitro growth inhibition and mechanistic studies were done using alamarBlue, qRT-PCR, immunoblot
Protective effect of the BET protein inhibitor JQ1 in cisplatin-induced nephrotoxicity. As a potent chemotherapy drug, cisplatin is also notorious for its side-effects including nephrotoxicity in kidneys, presenting a pressing need to identify renoprotective agents. Cisplatin nephrotoxicity involves epigenetic regulations, including changes in histone acetylation. Bromodomain and extraterminal (BET) proteins are "readers" of the epigenetic code of histone acetylation. Here, we investigated the potential renoprotective effects of JQ1, a small molecule inhibitor of BET proteins. We show that JQ1 significantly ameliorated cisplatin-induced nephrotoxicity in mice as indicated by the measurements of kidney function, histopathology, and renal tubular apoptosis. JQ1 also partially prevented
Metformin and JQ1 synergistically inhibit obesity-activated thyroid cancer. Compelling epidemiological evidence shows a strong positive correlation of obesity with thyroid cancer. studies have provided molecular evidence that high-fat-diet-induced obesity promotes thyroid cancer progression by aberrantly activating leptin-JAK2-STAT3 signaling in a mouse model of thyroid cancer ( mice -fat-diet-induced obese mice (HFD- mice). Further, metformin, a widely used antidiabetic drug, blocks invasion and metastasis, but not thyroid tumor growth in HFD mice. To improve efficacy in reducing thyroid tumor growth, we treated HFD with JQ1, a potent inhibitor of the activity of bromodomain and extraterminal domain (BET) and with metformin. We found that the combined treatment synergistically
BET-inhibition by JQ1 promotes proliferation and self-renewal capacity of hematopoietic stem cells. Although inhibitors of bromodomain and extra terminal domain (BET) proteins show promising clinical activity in different hematologic malignancies, a systematic analysis of the consequences of pharmacological BET inhibition on healthy hematopoietic (stem) cells is urgently needed. We found that JQ1 treatment decreases the numbers of pre-, immature and mature B cells while numbers of early pro-B cells remain constant. In addition, JQ1 treatment increases apoptosis in T cells, all together leading to reduced cellularity in thymus, bone marrow and spleen. Furthermore, JQ1 induces proliferation of long-term hematopoietic stem cells, thereby increasing stem cell numbers. Due to increased numbers, JQ1
(+)-JQ1 attenuated LPS-induced microglial inflammation via MAPK/NFκB signaling Microglia activation is a crucial event in neurodegenerative disease. The depression of microglial inflammatory response is considered a promising therapeutic strategy. NFκB signaling, including IKK/IκB phosphotylation, p65 nucelus relocalization and NFκB-related genes transcription are prevalent accepted to play important role in microglial activation. (+)-JQ1, a BRD4 inhibitor firstly discovered as an anti-tumor agent, was later confirmed to be an anti-inflammatory compound. However, its anti-inflammatory effect in microglia and central neural system remains unclear. In the current work, microglial BV2 cells were applied and treatment with lipopolysaccharide (LPS) to induce inflammation and later administered
JQ1 affects BRD2-dependent and independent transcription regulation without disrupting H4-hyperacetylated chromatin states The bromodomain and extra-terminal domain (BET) proteins are promising drug targets for cancer and immune diseases. However, BET inhibition effects have been studied more in the context of bromodomain-containing protein 4 (BRD4) than BRD2, and the BET protein association and promoters, where BRD2 has a stronger association with H4K5acK8ac than H3K27ac. Although BET inhibition by JQ1 led to complete reduction of BRD2 binding to chromatin, only local changes of H4K5acK8ac levels were observed, suggesting that recruitment of BRD2 does not influence global histone H4 hyperacetylation levels. This finding supports a model in which recruitment of BET proteins via histone H4
Enhancement of adenovirus infection and adenoviral vector-mediated gene delivery by bromodomain inhibitor JQ1 Adenovirus-based vectors are among the most commonly used platforms for gene delivery and gene therapy studies. One of the obstacles for potential application is dose-related toxicity. We show here that adenovirus infection and Ad-mediated gene delivery can be enhanced by inhibitors of bromodomain and extra-terminal (BET) family proteins. We showed that JQ1, but not its inactive enantiomer (-)-JQ1, dose-dependently promoted Ad infection and Ad-mediated gene delivery in both epithelial and lymphocyte cells. Given orally, JQ1 also enhanced transgene expression in a murine tumor model. Inhibitors of histone deacetylases (HDACi) are among the commonly reported small molecule compounds which
BRD4 inhibitor JQ1 inhibits and reverses mechanical injury-induced corneal scarring Corneal scarring is characterized by the improper deposition of extracellular matrix components and myofibroblast differentiation from keratocytes. The bromodomain-containing protein 4 (BRD4) inhibitor JQ1 has been shown to attenuate pathological fibrosis. The present study aimed to explore the potential therapeutic effect of JQ1 on mechanical injury-induced mouse corneal scarring and TGFβ-induced human corneal myofibroblast differentiation and the related mechanism. The corneal scarring and myofibroblast differentiation were evaluated with clinical observation and fibrosis-related gene expression analysis. In mice, subconjunctivally injected JQ1 suppressed the initial development and reversed
Hitting two oncogenic machineries in cancer cells: cooperative effects of the multi-kinase inhibitor ponatinib and the BET bromodomain blockers JQ1 or dBET1 on human carcinoma cells In recent years, numerous new targeted drugs, including multi-kinase inhibitors and epigenetic modulators have been developed for cancer treatment. Ponatinib blocks a variety of tyrosine kinases including ABL and fibroblast growth factor receptor (FGFR), and the BET bromodomain (BRD) antagonists JQ1 and dBET1 impede MYC oncogene expression. Both drugs have demonstrated substantial anti-cancer efficacy against several hematological malignancies. Solid tumors, on the other hand, although frequently driven by FGFR and/or MYC, are often unresponsive to these drugs. This is due, at least in part, to compensatory
BET bromodomain inhibitor JQ1 preferentially suppresses EBV-positive nasopharyngeal carcinoma cells partially through repressing c-Myc The management of advanced nasopharyngeal carcinoma (NPC) remains a challenge. The ubiquitous nature of Epstein-Barr virus (EBV) infection in nonkeratinizing NPC has forced us to investigate novel drugs for NPC in the presence of EBV. In this study, we performed a small-scale screening of a library of compounds that target epigenetic regulators in paired EBV-positive and EBV-negative NPC cell lines. We found that bromodomain and extra-terminal (BET) inhibitor JQ1 preferentially inhibits the growth of EBV-positive NPC cells. JQ1 induces apoptosis, decreases cell proliferation and enhances the radiosensitivity in NPC cells, especially EBV-positive cells
The BET-bromodomain inhibitor JQ1 mitigates vemurafenib drug resistance in melanoma Inhibition of BRAF improves therapeutic efficacy of BRAF-mutant melanoma. However, drug resistance to BRAF inhibitor is inevitable, and the drug resistance mechanisms still remain to be elucidated. Here, BRAF mutant cells A375 and SK-MEL-28 were chosen and treated with BRAF inhibitor vemurafenib, and the results . Furthermore, JQ1, a bromodomain inhibitor, was added to the vemurafenib-resistant cells and sensitizes the vemurafenib-induced melanoma cell apoptosis. In C57BL/6 mice intravenously injected with vemurafenib-resistant melanoma cells, cotreatment of vemurafenib and JQ1 also severely suppressed melanoma lung metastasis. Taken together, our findings may have important implications for the combined use
Isocitrate dehydrogenase 1 mutation sensitizes intrahepatic cholangiocarcinoma to the BET inhibitor JQ1 Cholangiocarcinoma is a life-threatening disease with a poor prognosis. Although genome analysis unraveled some genetic mutation profiles in cholangiocarcinoma, it remains unknown whether such genetic abnormalities relate to the effects of anticancer drugs. Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) are exclusively found in almost 20% of intrahepatic cholangiocarcinoma (ICC). Recently, the anticancer effects of BET inhibitors including JQ1 have been shown in various tumors. In the present study, we report that the antigrowth effect of JQ1 differs among ICC cells and IDH1 mutation sensitizes ICC cells to JQ1. RBE cells harboring IDH1 mutation was more sensitive to JQ1 than
Toxicity of JQ1 in neuronal derivatives of human umbilical cord mesenchymal stem cells Bromodomain and extra-terminal domain (BET) proteins regulate the transcription of many genes including , a proto-oncogene, which is upregulated in many types of cancers. The thienodiazepine class of BET inhibitors, such as JQ1, inhibits growth of cancer cells and triggers apoptosis. However, the effects of BET inhibitors on normal cells and mesenchymal stem cells (MSCs), which are important in routine maintenance or regeneration of damaged cells and tissues, are poorly investigated. Previously, we have shown that JQ1 causes human umbilical cord MSCs to undergo cell cycle arrest and neural differentiation. In this study, we determined that JQ1 is more deleterious to neuronal derivatives (NDs) than