The L-α-lysophosphatidylinositol/GPR55 system induces the development of non-alcoholic steatosis and steatohepatitis. G protein-coupled receptor (GPR) 55 is a putative cannabinoid receptor, and l-α-lysophosphatidylinositol (LPI) is its only known endogenous ligand. Although GPR55 has been linked to energy homeostasis in different organs, its specific role in lipid metabolism in the liver and its
Lysophosphatidylinositol-induced activation of the cation channel TRPV2 triggers glucagon-like peptide-1 secretion in enteroendocrine L cells The lysophosphatidylinositol (LPI) has crucial roles in multiple physiological processes, including insulin exocytosis from pancreatic islets. However, the role of LPI in secretion of glucagon-like peptide-1 (GLP-1), a hormone that enhances glucose-induced
A Putative Lysophosphatidylinositol Receptor GPR55 Modulates Hippocampal Synaptic Plasticity GPR55, an orphan G-protein coupled receptor, is activated by lysophosphatidylinositol (LPI) and the endocannabinoid anandamide, as well as by other compounds including THC. LPI is a potent endogenous ligand of GPR55 and neither GPR55 nor LPIs' functions in the brain are well understood. While
Mutations in MBOAT7, Encoding Lysophosphatidylinositol Acyltransferase I, Lead to Intellectual Disability Accompanied by Epilepsy and Autistic Features. The risk of epilepsy among individuals with intellectual disability (ID) is approximately ten times that of the general population. From a cohort of >5,000 families affected by neurodevelopmental disorders, we identified six consanguineous families harboring homozygous inactivating variants in MBOAT7, encoding lysophosphatidylinositol acyltransferase (LPIAT1). Subjects presented with ID frequently accompanied by epilepsy and autistic features. LPIAT1 is a membrane-bound phospholipid-remodeling enzyme that transfers arachidonic acid (AA) to lysophosphatidylinositol to produce AA-containing phosphatidylinositol. This study suggests a role
Activation of the orphan receptor GPR55 by lysophosphatidylinositol promotes metastasis in triple-negative breast cancer The orphan G protein-coupled receptor GPR55 has been directly or indirectly related to basic alterations that drive malignant growth: uncontrolled cancer cell proliferation, sustained angiogenesis, and cancer cell adhesion and migration. However, little is known about the involvement of this receptor in metastasis. Here, we show that elevated GPR55 expression in human tumors is associated with the aggressive basal/triple-negative breast cancer population, higher probability to develop metastases, and therefore poor patient prognosis. Activation of GPR55 by its proposed endogenous ligand lysophosphatidylinositol confers pro-invasive features on breast cancer cells both
Lysophosphatidylinositol Signalling and Metabolic Diseases Metabolism is a chemical process used by cells to transform food-derived nutrients, such as proteins, carbohydrates and fats, into chemical and thermal energy. Whenever an alteration of this process occurs, the chemical balance within the cells is impaired and this can affect their growth and response to the environment, leading metabolism. Cellular lipids are the major component of cell membranes; they represent also a valuable source of energy and therefore play a crucial role for both cellular and physiological energy homeostasis. In this review, we will focus on the physiological and pathophysiological roles of the lysophospholipid mediator lysophosphatidylinositol (LPI) and its receptor G-protein coupled receptor 55 (GPR55
A novel biological role for the phospholipid lysophosphatidylinositol in nociceptive sensitization via activation of diverse G-protein signaling pathways in sensory nerves in vivo. The rich diversity of lipids and the specific signalling pathways they recruit provides tremendous scope for modulation of biological functions. Lysophosphatidylinositol (LPI) is emerging as a key modulator of cell
is implicated in non-alcoholic fatty liver disease (NAFLD), alcohol-associated liver disease (ALD), and liver fibrosis. However, the precise mechanism underlying MBOAT7-driven liver disease progression remains elusive. Previously, we identified MBOAT7-driven acylation of lysophosphatidylinositol lipids as key mechanism suppressing the progression of NAFLD (Gwag et al., 2019). Here, we show that MBOAT7 loss
and modulate immune responses positively or negatively via G-protein-coupled receptor-type receptors. These include lysophosphatidic acid, lysophosphatidylserine (LysoPS), and lysophosphatidylinositol. Here, we summarize what is known about the synthetic pathways, receptors, and immunomodulatory functions of these LPLs. Particular focus is given to LysoPS, which have recently been identified, and recent
set with an area under receiver-operating curve metric above 0.80. Logistic regression modelling using concentrations of decanoylcarnitine, cholesterol ester (22:5), eicosatrienoic acid, L-alpha-lysophosphatidylinositol (18:0) and phosphatidylethanolamine (O-16:0/18:1) distinguished BAD from controls with a sensitivity of 0.78 (95% CI 0.64 to 0.89) and a specificity of 0.93 (95% CI 0.83 to 0.98
by SYBR green-based quantitative real-time RT-PCR. Altered metabolites and gene expression were documented. Lipidomic analysis revealed decreased levels of triacylglycerols (TG), diacylglycerol (DG), fatty acids (FA), phosphatidylcholine (PC), lysophosphatidylinositols (LPI) and sphingomyelin (SM), and increased levels of bile acids (BA) and ceramides, likely promoting disc cell metabolism changing from
and N-acyl phosphatidylserine in the putamen. N-acyl serine was decreased in the CN and DLPFC, whereas lysophosphatidylinositol was decreased in the DLPFC. We present the first evidence of altered sphingolipid and phospholipid levels in the brains of patients with ChAc. Our observations are congruent with recent findings in cellular and animal models, and implicate defects of lipid processing
previous history of diabetes but scheduled for pancreaticoduodenectomy resulting in the acute reduction of their ß-cell mass (about 50%), and in patients with type 2 diabetes. We found higher lysophosphatidylinositols (LysoPIs) as the main circulating lipid species altered in prediabetic mice. The changes were confirmed in the patients with acute reduction of their ßcell mass and in type 2 diabetes
/functionality directly correlated with lipid modules, species, clinical parameters, and bile acid profile (p < 0.05). Increased bacterial taxa (Leptospira, Salmonella enterica, Mycoplasma gallisepticum) and their functionality showed a direct correlation with lipid classes such as lysophosphatidylinositol, ceramide 1-phosphate, and lysophosphatidylethanolamine and development of CAGB (r > 0.85). Lipid
increased or decreased in strongyloidiasis condition, from which a group of 5 biomarkers comprising caprylic acid, mannitol, glucose, lysophosphatidylinositol and hydroxy-dodecanoic acid demonstrated accuracy over 89% to be explored as potential markers. The observed metabolic alteration in stool samples indicates involvement of microbiota remodeling, parasite constitution, and host response during S
, phosphatidylinositol, and lysophosphatidylinositol increased, especially in patients with severe COVID-19 during the later phase, suggesting that their modulations might result from kidney injuries accompanying severe COVID-19. Considering the biological properties of sphingolipids and glycerophospholipids, an understanding of their urinary modulations in COVID-19 will help us to understand the mechanisms causing
were enriched in tryptophan metabolism pathway; another module was correlated with fiber numbers (FN) between right fusiform gyrus and right inferior temporal gyrus, which was enriched in lysophosphatidylcholine (LPC), lysophosphatidylinositol (LPI) and lysophosphatidylglycerol (LPG) lipid sets. l-Kynurenine in tryptophan metabolism pathway was negatively correlated with FN between right fusiform
. The metabolomes in inflamed mucosal biopsies differed between IBD patients and controls. In CD, mucosal levels of several lysophospholipids (lysophosphatidylcholines, lysophosphatidyletanolamines, lysophosphatidylinositols, and lysophosphatidylserines) were decreased, correlating with various plasma metabolites, including amino acid analogues and N-acetylated compounds. In both CD and UC, mucosal sphingolipids
, and hormonal parameters (luteinizing and follicle-stimulating hormones; total and free testosterone; sex hormone-binding globulin [SHBG]; and free androgen index [FAI]). Multivariable linear regression was used with correction for multiple testing. Despite finding no differences by PCOS status, lysophosphatidylinositol (LPI) species esterified with an 18:0 fatty acid were the strongest lipid species